
大家有没有听到过实数呀,小时候,老师肯定教过你啊,1,2,3,4,5……,这些数就叫自然数。那么零是自然数吗?咱们一起接着往下看吧。
0是属于自然数,“0”加入传统的自然数集合,所有的“运算规则”依旧保持,如新自然数集合{0,1,2,...,n,...}中的任何两个自然数都可以进行加法和乘法运算,而运算结果仍然是自然数。同时,加法、乘法运算的结合律和交换律,以及乘法的分配律也不会受到影响。
0其实是个非常重要的数字,虽然它表示什么都没有,但是这个符号的诞生却在数学史上具有划时代的意义。古代的很多文明古国在数学发展的早期,都是没有0这个概念的。因为数学是来源与生活,生活中能够看到的东西都是有实实在在的数量,1就是1,2就是2,所以很长一段时间内大家记数的方式都只有正数。到了后来,大家开始慢慢意识到了0的重要性,于是也开始出现了一些用来表示0的符号,这意味着人们开始从具体转为抽象的来理解数字了。最早的标准的数字0是有印度人发明的,在4000多年前,古印度的婆罗门教历史最悠久的文献《吠陀》中就已经有了“0”这个符号的记载,用来表示无和空的意思。后来印度的数学家开始规定了0的具体的一些定义,任何数无论是加上0还是减去0都还是等于任何数,0就是“空空如也”的象征。再后来,印度人把这套记数方法传到了阿拉伯人那里,于是便有了我们今天使用的阿拉伯数字的0。在国际上,大家都是通用的把0归入自然数集的范畴,所以为了跟国际数学接轨,我们的教材也作了相应的调整,把0归入了自然数中。

自然数是指用以计量事物的件数或表示事物次序的数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数;也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。
自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用。人们还常常用自然数来给事物标号或排序,如城市的公共汽车路线,门牌号码,邮政编码等。
自然数是一切等价有限集合共同特征的标记。整数包括自然数,所以自然数一定是整数,且一定是非负整数。
但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不总是成立的。用以计量事物的件数或表示事物次序的数 。即用数码0,1,2,3,4,……所表示的数 。表示物体个数的数叫自然数,自然数一个接一个,组成一个无穷集体。
自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论:自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。

0是有理数,0是介于-1和1之间的整数,是最小的自然数。有理数集的数分为正有理数、负有理数和零。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。

在生活中,我们会看到各种各样的数字,也会跟各种各样的数字打交道。比如,财务报表上的数字,商场购物发票上的数字等等。很多时候,这些数字并不是整数,而是精确到小数点后几位。那么,问题来了,自然数包括小数吗?
自然数不包括小数。自然数是由零开始包括正整数,一个接一个正无穷的集合,用来表示物体个数的数,所以自然数不包括小数。自然数是指用以计量事物的件数或表示事物次序的数,即用数码0,1,2,3,4……所表示的数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。
自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用。人们还常常用自然数来给事物标号或排序,如城市的公共汽车路线,门牌号码,邮政编码等。
自然数是整数(自然数包括正整数和零),但整数不全是自然数,例如:-1 -2 -3......是整数,而不是自然数。自然数是无限的。
全体非负整数组成的集合称为非负整数集,即自然数集。
自然数按是否是偶数分可分为奇数和偶数
1、奇数:不能被2整除的数叫奇数。
2、偶数:能被2整除的数叫偶数。也就是说,除了奇数,就是偶数。注:0是偶数。
自然数按因数个数分可分为质数、合数、1和0
1、质 数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。
2、合 数:除了1和它本身还有其它的因数的自然数叫做合数。
3、1只有1个因数。它既不是质数也不是合数。
4、当然0不能计算因数,和1一样,也不是质数也不是合数。

从历史上看,国内外数学界对于0是不是自然数历来有两种观点:一种认为0是自然数,另一种认为0不是自然数。建国以来,我国的中小学教材一直规定自然数不包括0。目前,国外的数学界大部分都规定0是自然数。
为了国际交流的方便,1993年颁布的《中华人民共和国国家标准》《量和单位》(11-2.9)第311页,规定自然数包括0。所以在近几年进行的中小学数学教材修订中,我们的教材研究编写人员根据上述国家标准进行了修改。即一个物体也没有,用0表示。0也是自然数。
但是,在小学阶段的“整除”部分,仍然不考虑自然数0,因而在约数、倍数等概念中都不包括0。另外,一般情况下我们不说数0是几位数,所以最小的一位数是1。
自然数是指用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4……所表示的数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。

自然数不包括负数。自然数是指用以计量事物的件数或表示事物次序的数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。
自然数的特性:1、有序性。自然数的有序性是指,自然数可以从0开始,不重复也不遗漏地排成一个数列:0,1,2,3,…这个数列叫自然数列。一个集合的元素如果能与自然数列或者自然数列的一部分建立一一对应,我们就说这个集合是可数的,否则就说它是不可数的。
2、无限性。自然数集是一个无穷集合,自然数列可以无止境地写下去。对于无限集合来说“,元素个数”的概念已经不适用,用数个数的方法比较集合元素的多少只适用于有限集合。为了比较两个无限集合的元素的多少,集合论的创立者德国数学家康托尔引入了一一对应的方法。这一方法对于有限集合显然是适用的,21世纪把它推广到无限集合,即如果两个无限集合的元素之间能建立一个一一对应,我们就认为这两个集合的元素是同样多的。
3、最小数原理。自然数集合的任一非空子集中必有最小的数。有理数集、实数集都是线性序集。例如所有形如nm(m>n,m,n都是自然数)的数组成的集合是有理数集的非空子集,这个集合就没有最小数;开区间(0,1)是实数集合的非空子集,它也没有最小数。

